Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626737

RESUMO

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Técnicas Biossensoriais , Diagnóstico Precoce , Tecnologia de Fibra Óptica , Fragmentos de Peptídeos , Análise Espectral , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Humanos , Tecnologia de Fibra Óptica/métodos , Fragmentos de Peptídeos/análise , Técnicas Biossensoriais/métodos , Análise Espectral/métodos , Fibras Ópticas , Biomarcadores/análise , Refratometria , Desenho de Equipamento
2.
Sci Rep ; 8(1): 14828, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287873

RESUMO

Dimethyl sulfoxide (DMSO) is a small molecule with polar, aprotic and amphiphilic properties. It serves as a solvent for many polar and nonpolar molecules and continues to be one of the most used solvents (vehicle) in medical applications and scientific research. To better understand the cellular effects of DMSO within the concentration range commonly used as a vehicle (0.1-1.5%, v/v) for cellular treatments, we applied Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FT-IR) spectroscopy to DMSO treated and untreated epithelial colon cancer cells. Both unsupervised (Principal Component Analysis-PCA) and supervised (Linear Discriminant Analysis-LDA) pattern recognition/modelling algorithms applied to the IR data revealed total segregation and prominent differences between DMSO treated and untreated cells at whole, lipid and nucleic acid regions. Several of these data were supported by other independent techniques. Further IR data analyses of macromolecular profile indicated comprehensive alterations especially in proteins and nucleic acids. Protein secondary structure analysis showed predominance of ß-sheet over α-helix in DMSO treated cells. We also observed for the first time, a reduction in nucleic acid level upon DMSO treatment accompanied by the formation of Z-DNA. Molecular docking and binding free energy studies indicated a stabilization of Z-DNA in the presence of DMSO. This alternate DNA form may be related with the specific actions of DMSO on gene expression, differentiation, and epigenetic alterations. Using analytical tools combined with molecular and cellular biology techniques, our data indicate that even at very low concentrations, DMSO induces a number of changes in all macromolecules, which may affect experimental outcomes where DMSO is used as a solvent.


Assuntos
Neoplasias do Colo/patologia , Dimetil Sulfóxido/metabolismo , Células Epiteliais/fisiologia , Algoritmos , Neoplasias do Colo/metabolismo , Simulação por Computador , DNA Forma Z/metabolismo , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Complexos Multiproteicos/metabolismo , Análise de Componente Principal , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Receptores de Reconhecimento de Padrão/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Chem Phys ; 5122018.
Artigo em Inglês | MEDLINE | ID: mdl-30996509

RESUMO

One of the most commonly used nonsteroidal anti-inflammatory active pharmaceutical ingredient called Meloxicam has been characterized spectroscopically both by Terahertz (THz) time domain spectroscopy (THz-TDS) and by Fourier Transform Infrared (FTIR) spectroscopy in far-IR regions of electromagnetic spectrum; 0.2 THz to 20 THz. While many relatively sharp features are observed in the far-IR range between 2 THz to 20 THz as expected for being an organic substance, very distinct and relatively strong absorption bands are also observed at 1.00, 1.66, 2.07 and 2.57 THz in the THz range. These well separated, defined, and fairly strong spectral features can be used for discrimination and quantification of Meloxicam in drug analysis. Frequency dependent refractive index of the drug was determined in a range of 0.2 THz and 2.7 THz, where an almost constant index was observed with an average index of 1.75. Powder XRD, and solid-state Density Functional Theory (SS-DFT) calculations were utilized to determine the crystalline form of the Meloxicam sample in its enolic crystalline form. Single molecule DFT calculations were also performed in all four possible structures of Meloxicam. In addition, the capability of THz waves transmission through common packaging materials is demonstrated for possibility of future on-site analysis. The results suggest that drug analysis will be possible to perform not only at every stage of manufacturing without destruction but also directly at the shelf of a market after development of portable THz technologies.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28649166

RESUMO

Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

5.
J Phys Chem A ; 118(17): 3081-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24701997

RESUMO

Investigation of frequency dependent permittivity of mixture solutions provides information on the role of intermolecular interactions on relaxation processes of solvent and solute molecules. In this study the dielectric properties of ethanol/gasoline mixtures in the terahertz spectral region are investigated. Frequency dependent absorption coefficients, refractive indices, and complex permittivities of pure ethanol and gasoline, and their mixtures at varying ethanol volume percentages (v/v %) are reported. As the mixing ratio changes, meaningful shifts are observed in the frequency dependent refractive index and absorption coefficients associated with the dominant component, ethanol. The relaxation dynamics of the pure gasoline and ethanol are successfully modeled with the Debye model using the ultrafast nature of the terahertz transients, and those of mixture solutions are investigated by an additive model with an assumption of minimum interaction due to the significant differences in their molecular natures; polar and nonpolar. Successful modeling of the mixtures confirms the weak interaction assumption and enables us to accurately determine the ethanol content. Among five ethanol/gasoline blends, except for one mixture, the estimated percent ethanol in gasoline is predicted with an accuracy of ca. 1% with respect to the actual ethanol percentage. In addition, the results show that free OH contribution to the macroscopic polarization is significantly higher at low concentrations (5-20%) and lower at 50% compared to the case of pure ethanol. The measurements and analysis presented here show that time domain terahertz studies can offer invaluable insight into development of new models for polar/nonpolar complex mixture solutions.

6.
Phys Rev Lett ; 108(7): 077402, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401254

RESUMO

We elucidate photoexcitation dynamics in C(60) and zinc phthalocyanine (ZnPc) from picoseconds to milliseconds by transient absorption and time-resolved terahertz spectroscopy. Autoionization of C(60) is a precursor to photocarrier generation. Decay of the terahertz signal is due to decreasing photocarrier mobility over the first 20 ps and thereafter reflects recombination dynamics. Singlet diffusion rates in C(60) are determined by modeling the rise of ground state bleaching of ZnPc absorption following C(60) excitation. Recombination dynamics transform from bimolecular to monomolecular as the layer thickness is reduced, revealing a metastable exciplex at the C(60)/ZnPc interface with a lifetime of 150 µs.

7.
Chemphyschem ; 8(17): 2412-31, 2007 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-17990257

RESUMO

Terahertz (THz) spectroscopic investigations of condensed-phase biological samples are reviewed ranging from the simple crystalline forms of amino acids, carbohydrates and polypeptides to the more complex aqueous forms of small proteins, DNA and RNA. Vibrationally resolved studies of crystalline samples have revealed the exquisite sensitivity of THz modes to crystalline order, temperature, conformational form, peptide sequence and local solvate environment and have given unprecedented measures of the binding force constants and anharmonic character of the force fields, properties necessary to improve predictability but not readily obtainable using any other method. These studies have provided benchmark vibrational data on extended periodic structures for direct comparisons with classical (CHARMm) and quantum chemical (density functional theory) theories. For the larger amorphous and/or aqueous phase samples, the THz modes form a continuum-like absorption that arises because of the full accessibility to conformational space and/or the rapid time scale for inter-conversion in these environments. Despite severe absorption by liquid water, detailed investigations have uncovered the photo- and hydration-induced conformational flexibility of proteins, the solvent shell depth of the water/biomolecule boundary layers and the solvent reorientation dynamics occurring in these interfacial layers that occur on sub-picosecond time scales. As such, THz spectroscopy has enhanced and extended the accessibility to intermolecular forces, length- and timescales important in biological structure and activity.


Assuntos
Análise Espectral/instrumentação , Análise Espectral/métodos , Aminoácidos/química , Animais , Humanos , Modelos Biológicos , Ácidos Nucleicos/química , Peptídeos/química , Água/química
8.
J Chem Phys ; 125(17): 174701, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17100455

RESUMO

Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...